高中数学必修五知识点总结[经典]

《必修五 知识点总结》

第一章:解三角形知识要点

一、正弦定理和余弦定理

1、正弦定理:在中,分别为角的对边,,则有

(的外接圆的半径)

正弦定理的变形公式:

2、余弦定理:在中,有,推论:

,推论:

,推论:

3、三角形面积公式:

二、解三角形

处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解

1、三角形中的边角关系

(1)三角形内角和等于180°

(2)三角形中任意两边之和大于第三边,任意两边之差小于第三边;

(3)三角形中大边对角,小边对角;

(4)正弦定理中,a=2R·sinA, b=2R·sinB, c=2R·sinC,其中RABC外接圆半径.

(5)在余弦定理中:2bccosA=.

6三角形的面积公式有:S=ah, S=absinC=bcsinA=acsinB , S=其中,hBC边上高P半周长.

2、利用正、余弦定理及三角形面积公式等解任意三角形

(1)已知两角及一边,求其它边角,常选用正弦定理.

(2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理.

(3)已知三边,求三个角,常选用余弦定理.

(4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理.

(5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理.

3、利用正、余弦定理判断三角形的形状

常用方法是:①化边为角;②化角为边.

4、三角形中的三角变换

(1)角的变换

因为在△ABCA+B+C=π,所以

sin(A+B)=sinCcos(A+B)=cosCtan(A+B)=tanC

(2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。

r为三角形内切圆半径,p为周长之半

三、解三角形的应用

1.坡角和坡度:

坡面与水平面的锐二面角叫做坡角,坡面的垂直高度和水平宽度的比叫做坡度,用表示,根据定义可知:坡度是坡角的正切,即.

2.俯角和仰角:

如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.

3. 方位角

从指北方向顺时针转到目标方向线的水平角,如B点的方位角为.

注:仰角、俯角、方位角的区别是:三者的参照不同。仰角与俯角是相对于水平线而言的,而方位角是相对于正北方向而言的。

4. 方向角:

相对于某一正方向的水平角.

5.视角:

由物体两端射出的两条光线,在眼球内交叉而成的角叫做视角.

第二章:数列知识要点

一、数列的概念

1、数列的概念:

一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的,数列的一般形式可以写成,简记为数列,其中第一项也成为首项是数列的第项,也叫做数列的通项.

数列可看作是定义域为正整数集(或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.

2、数列的分类:

按数列中项的多数分为:

(1) 有穷数列:数列中的项为有限个,即项数有限;

(2) 无穷数列:数列中的项为无限个,即项数无限.

3、通项公式:

如果数列的第与项数之间的函数关系可以用一个式子表示成,那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.

4、数列的函数特征:

一般地,一个数列

如果从第二项起,每一项都大于它前面的一项,即,那么这个数列叫做递增数列;

如果从第二项起,每一项都小于它前面的一项,即,那么这个数列叫做递减数列;

如果数列的各项都相等,那么这个数列叫做常数列.

5、递推公式:

某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式

二、等差数列

1、等差数列的概念:

如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.

(常数),这也是证明或判断一个数列是否为等差数列的依据.

2、等差数列的通项公式:

设等差数列的首项为,公差为,则通项公式为:

.

3、等差中项:

1)若成等差数列,则叫做的等差中项,且;

2)若数列为等差数列,则成等差数列,即的等差中项,且;反之若数列满足,则数列是等差数列.

4、等差数列的性质:

1)等差数列中,若,若

2)若数列均为等差数列,则数列也为等差数列;

3)等差数列的公差为,则

为递增数列,为递减数列,为常数列.

5、等差数列的前n项和

1)数列的前n项和=

2)数列的通项与前n项和的关系:

3)设等差数列的首项为公差为,则前n项和

6、等差数列前n和的性质:

1)等差数列中,连续m项的和仍组成等差数列,即

,仍为等差数列(即成等差数列);

2)等差数列的前n项和时,可看作关于n的二次函数,且不含常数项;

3)若等差数列共有2n+1(奇数)项,则若等差数列共有2n(偶数)项,则

7、等差数列前n项和的最值问题:

设等差数列的首项为公差为,则

1(即首正递减)时,有最大值且的最大值为所有非负数项之和;

2(即首负递增)时,有最小值且的最小值为所有非正数项之和.

三、等比数列

1、等比数列的概念:

如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母表示(.

,这也是证明或判断一个数列是否为等比数列的依据.

2、等比数列的通项公式:

设等比数列的首项为,公比为,则通项公式为:.

3、等比中项:

1)若成等比数列,则叫做的等比中项,且;

2)若数列为等比数列,则成等比数列,即的等比中项,且;反之若数列满足,则数列是等比数列.

4、等比数列的性质:

1)等比数列中,若,若

2)若数列均为等比数列,则数列也为等比数列;

3)等比数列的首项为,公比为,则

为递增数列,为递减数列,

为常数列.

5、等比数列的前n项和:

1)数列的前n项和=

2)数列的通项与前n项和的关系:

3)设等比数列的首项为,公比为,则

由等比数列的通项公式及前n项和公式可知,已知中任意三个,便可建立方程组求出另外两个.

6、等比数列的前n项和性质:

设等比数列中,首项为,公比为,则

1)连续m项的和仍组成等比数列,即,仍为等比数列(即成等差数列);

2)当时,

,则.

四、递推数列求通项的方法总结

1、递推数列的概念:

一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列.

2、两个恒等式:

对于任意的数列恒有:

(1)

2

3、递推数列的类型以及求通项方法总结:

类型一(公式法)已知(即)求,用作差法:

类型二(累加法):已知:数列的首项,,求.

给递推公式中的n依次取1,2,3,……,n-1,可得到下面n-1个式子:

利用公式可得:

类型三(累乘法):已知:数列的首项,,求.

给递推公式中的n一次取1,2,3,……,n-1,可得到下面n-1个式子:

利用公式可得:

类型四(构造法):形如为常数)的递推数列都可以用待定系数法转化为公比为的等比数列后,再求

解法:把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。

解法:该类型较要复杂一些。一般地,要先在原递推公式两边同除以,得:引入辅助数列(其中),得:再应用的方法解决

类型五(倒数法):已知:数列的首项,,求.

,即数列是以为公差的等差数列.

(转换成类型四.

五、数列常用求和方法

1.公式法

直接应用等差数列、等比数列的求和公式,以及正整数的平方和公式,立方和公式等公式求解.

2.分组求和法

一个数列的通项公式是由若干个等差或等比或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减.

3.裂项相消法

把数列的通项拆成两项之差,在求和时一些正负项相互抵消,于是前n项和就变成了首尾少数项之和.

4.错位相减法

如果一个数列的各项是由一个等差数列和一个等比数列对应项的乘积组成的,此时可把式子的两边同乘以公比,得到,两式错位相减整理即可求出.

5、常用公式:

1、平方和公式:

2、立方和公式:

3、裂项公式:

六、数列的应用

1、零存整取模型:

银行有一种叫作零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期,可以取出全部本利和,这是整取.规定每次存入的钱不计复利.

注:单利的计算是仅在原本金上计算利息,对本金所产生的利息不再计算利息.其公式为:利息=本金×利率×存期.以符号p代表本金,n代表存期,r代表利率,s代表本金和利息和(即本利和),则有s=p(1+nr).

零存整取是等差数列求和在经济方面的应用.

2、定期自动转存模型:

银行有一种储蓄业务为定期存款自动转存.例如,储户某日存入一笔1年期定期存款,1年后,如果储户不取出本利和.则银行自动办理转存业务,2年的本金就是第1年的本利和.

注:复利是把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的.复利的计算公式是:s=p(1+r)n.

定期自动转存(复利)是等比数列求和在经济方面的应用.

3、分期付款模型:

分期付款要求每次付款金额相同外,各次付款的时间间隔也相同.分期付款总额要大于一次性付款总额,二者的差额与分多少次付款有关,且付款的次数越少,差额越大.分期付款是等比数列的模型.

采用分期付款的方法,购买售价为a元的商品(或贷款a元),,每期付款数相同,购买后1个月(或1年)付款一次,如此下去,到第n次付款后全部付清,如果月利率(或年利率)为b,按复利计算,那么每期付款x元满足下列关系:

设第n次还款后,本利欠款数为,则

知,

数列是以为首项,为公比的等比数列.

.

得:

第三章:不等式知识要点

一、不等式的解法

1、不等式的同解原理

原理1:不等式的两边都加上(或减去)同一个数或同一个整式,所得不等式与原不等式是同解不等式;

原理2:不等式的两边都乘以(或除以)同一个正数或同一个大于零的整式,所得不等式与原不等式是同解不等式;

原理3:不等式的两边都乘以(或除以)同一个负数或同一个小于零的整式,并把不等式改变方向后所得不等式与原不等式是同解不等式。

2、一元二次不等式的解法:

一元二次不等式的解集的端点值是对应二次方程的根,是对应二次函数的图像与x轴交点的横坐标。

二次函数

的图象

有两相异实根

有两相等实根

无实根

注意:

1)一元二次方程的两根是相应的不等式的解集的端点的取值,是抛物线轴的交点的横坐标;

2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二     次项系数为正的形式,然后讨论解决;

3)解集分三种情况,得到一元二次不等式的解集。

3、一元高次不等式的解法:

解高次不等式的基本思路是通过因式分解,将它转化成一次或二次因式的乘积的形式,然后利用数轴标根法或列表法解之。

数轴标根法原则:(1)“右、上”(2)“奇过,偶不过”

4、分式不等式的解法:

1)若能判定分母(子)的符号,则可直接化为整式不等式。

2)若不能判定分母(子)的符号,则可等价转化:

5、指数、对数不等式的解法:

1

2

6、含绝对值不等式的解法:

对于含有多个绝对值的不等式,利用绝对值的意义,脱去绝对值符号。

二、基本不等式

1、基本不等式:

,则,当且仅当时,等号成立.

称为正数的算术平均数,称为正数的几何平均数.

变形应用:,当且仅当时,等号成立.

2、基本不等式推广形式:

如果,则当且仅当时,等号成立.

3、基本不等式的应用:设都为正数,则有:

(和为定值),则当时,积取得最大值

(积为定值),则当时,和取得最小值

注意:在应用的时候,必须注意“一正二定三相等”三个条件同时成立。

4、常用不等式:



三、简单的线性规划问题

1二元一次不等式表示平面区域:

在平面直角坐标系中,已知直线Ax+By+C=0,坐标平面内的点Px0y0

B0时,①Ax0+By0+C0,则点Px0y0)在直线的上方;②Ax0+By0+C0,则点Px0y0)在直线的下方

对于任意的二元一次不等式Ax+By+C0(或<0),无论B为正值还是负值,我们都可以把y项的系数变形为正数

B0时,①Ax+By+C0表示直线Ax+By+C=0上方的区域;②Ax+By+C0表示直线Ax+By+C=0下方的区域

2、线性规划:

求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题

满足线性约束条件的解(xy)叫做可行解,由所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解生产实际中有许多问题都可以归结为线性规划问题

3、线性规划问题一般用图解法,其步骤如下:

1)根据题意,设出变量xy

2)找出线性约束条件;

3)确定线性目标函数z=fxy);

4)画出可行域(即各约束条件所示区域的公共区域);

5)利用线性目标函数作平行直线系fxy=tt为参数);

6)观察图形,找到直线fxy=t在可行域上使t取得欲求最值的位置,以确定最优解,给出答案

四、典型解题方法总结

1、线性目标函数问题

当目标函数是线性关系式如)时,可把目标函数变形为

可看作在上的截距,然后平移直线法是解决此类问题的常用方法,通过比较目标函数与线性约束条件直线的斜率来寻找最优解,一般步骤如下:

1)做出可行域;

2)平移目标函数的直线系,根据斜率和截距,求出最优解.

【例1】设变量满足约束条件则目标函数的最大值为

2、非线性目标函数问题的解法

当目标函数时非线性函数时,一般要借助目标函数的几何意义,然后根据其几何意义,数形结合,来求其最优解。近年来,在高考中出现了求目标函数是非线性函数的范围问题.这些问题主要考察的是等价转化思想和数形结合思想,出题形式越来越灵活,对考生的能力要求越来越高.常见的有以下几种:

1)比值问题

当目标函数形如,可把z看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ连线斜率的最值。

【例2已知变xy满足约束条件 取值范围是( ).

A[6] B)(-]∪[6,+

C)(-3]∪[6,+ D[36]

2)距离问题

当目标函数形如,可把z看作是动点与定点距离的平方,这样目标函数的最值就转化为PQ距离平方的最值。

【例3】已知x2y2的最大值与最小值.

3)截距问题

【例4不等式组表示的平面区域面积为81,则的最小值为_____

4)向量问题

【例5】已知点P的坐标(xy)满足:A20),则的最大值是 .

3、线性变换问题

【例6在平面直角坐标系xOy中,已知平面区域A{xy|xy1,且x≥0y≥0},则平面区域B{xyxy|xyA}的面积为 .

4、线性规划的逆向问题

【例7给出平面区域如图所示.若当且仅当xy

时,目标函数zaxy取最小值,则实数a的取值范

围是 .

《高中数学必修五知识点总结[经典].doc》
将本文的Word文档下载,方便收藏和打印
推荐:
下载文档
热门推荐
相关推荐