微电子技术发展面临的限制及发展前景

微电子技术发展面临的限制及发展前景
作者:宋长发
来源:《沿海企业与科技》2006年第12

        [摘要]微电子技术作为电子信息产业的核心技术,对各生产领域产生广泛而深远的影响。在微电子技术的发展过程中,随着微小型化进一步发展,摩尔定律目前面临极大挑战。文章介绍了微电子技术的发展及面临的限制与挑战,同时还介绍了微电子技术发展前景。

        [关键词]电子信息技术;微电子技术;电路芯片;摩尔定律;发展前景

        [作者简介]宋长发,桂林电子科技大学应用科技学院教师,广西桂林,541004

        [中图分类号] TN43[文献标识码] A [文章编号] 1007-7723200612-0075-02

        一、微电子技术的含义及影响

        当今社会科技发展日新月异,其中影响最大、渗透性最强、最具代表性的乃是以微电子技术为基础的电子信息技术。微电子技术作为电子信息产业的基础和心脏,对航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术及家用电器产业的发展产生直接而深远的影响。微电子技术主要包括三大内容:一是微电子材料制造。它包括各种半导体基材的制造,最主要的是硅晶片的生产制造;二是微电子制造技术。主要的是集成电路芯片的制造技术。它包含了薄膜工艺、图形技术、掺杂工艺及热处理技术;三是微电子封装及装联技术。主要包括IC芯片的封装和表面组装技术。如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。

        二、微电子技术发展面临的限制

        微电子制造技术,主要的是集成电路芯片的制造技术。它是微电子技术的核心,其发展推动着信息革命的进程。随着微电子制造技术的不断进步和创新,制备高纯度的单晶硅片,即晶()片的尺寸愈来愈大,从最初的2英寸,到现在硅晶片直径已达12英寸(300mm),有报道现在已经能生产14英寸(350mm)的圆晶,半导体材料生产取得了非凡的成就,为IC芯片的制造提供了基材。制造技术方面,单个芯片上可集成5亿个元件,这使得今天的微电子技术已超越了大规模、超大规模、特大规模集成时代。但按照Intel 公司创始人之一的Gordon E. Moore 1965年预言的摩尔定律:芯片集成度以每18个月翻一番这一速度发展。从1958年第一块半导体集成电路诞生到现在,硅芯片制造工业在微型化方面已面临极限挑战。这个极限可从理论极限和实际限制两个层面上看,具体可归纳成基本物理规律、材料物理属性的限制、器件电路计算机辅助设计与仿真、制造工艺技术和设备的限制、电路与系统等五个方面。

        (一)基本物理规律的限制

        硅基CMOS是今天微电子技术的基础。而IC性能的提高主要是通过对器件尺度以及电源电压进行合理的缩小(scaling down)实现的。但是这一缩小不是无限的,随着器件沟道长度、氧化层厚度,以及电源电压的缩小,诸如短沟道效应(SCE)、漏感应势垒降低效应(DIBL)、穿通效应(Punch-Through)以及热载流子效应(HCE)、量子隧道穿透等次级效应将会越来越难以克服。由于DIBL、量子隧道穿透等效应的增强将增大晶体管的漏电流,进而增加器件的静态功耗。当静态功耗在总功耗中达到一定比例,并且器件的输出电导大于其跨导时,晶体管的缩小就达到了极限。换言之,微电子学的理论基础是电磁学、量子力学、热力学与统计物理学。在集成电路中,是通过控制载流子在媒体中的运动来实现信息的传输、存储及处理,载流子在固体中的运动要遵循一系列的基本物理规律,而随着芯片的微小型化,热效应、电效应等造成的不良影响,目前的技术还无法克服这些违反规律的现象,这就制约了微电子技术的发展。

        (二)材料方面的限制

        目前微电子技术所采用的材料主要是硅材料(包括单晶硅和多晶硅),决定材料性质的参数主要有:介电常数ε、载流子的迁移率μ、载流子的饱和速度vs、击穿电场强度Ec、热导系数K等。这些性质共同决定了微电子技术在IC高度集成时受到极大的限制,制约了微型化的进一步发展。

        (三)工艺技术方面的限制

        微电子工艺技术主要包括微细线条的加工、高质量薄膜淀积和离子注入的控制,其中光刻技术是核心技术。其工艺方面的挑战主要是光刻设备。1978年时,人们认为光学光刻的极限是1微米。到现在虽已推进到0.05微米,但光刻技术受到来自于设备的分辨率(R)和焦深(DOF)的限制,每往前迈进一步都十分困难。虽然摩尔博士在2000年说:摩尔定律10年不会变”, 但现在进一步的微小型化仍受到限制。摩尔定律正面临挑战。

《微电子技术发展面临的限制及发展前景.doc》
将本文的Word文档下载,方便收藏和打印
推荐:
下载文档
热门推荐
相关推荐