正在进行安全检测...


浙江大学2000年数学分析考研试题及解答
一、1)求极限limt01ttt1e1
1ln(1t1limt01ttet11limt0etln(1tetelimt0et1t
elimt0etln(1t1ln(1t11tt1ln(1tt
ln(1telimt0tt11elimt01ln(1ttt12elim1tt02t11elimt0t2t(1te2
limt01ttttelimt0etln(1teetlimt0ln(1t(1t(1t1ln(1tt2t11
elim1tt0ln(1tt2elimt0(1t21t2telimt0t2t(1t2e2
2)设x0a,x1bxn1212(xn2xn1,求limnxn.由条件,得xnxn1反复使用此结果
(xn2xn1xn112(xn1xn2
1n11n1xnxn1((x1x0((ban1,2,
22于是x2n1(x2n1x2n(x2nx2n1(x1x0x0
12n12n1((ab((ab(aba221((ab122n11(12a23(aba2ba3(n
x2n(x2nx2n1(x2n1x2n2(x1x0x0

1
12n112n2((ab((ab(aba221((ab12a2b2(na(aba1331(2nn2na2b时,limxn0;当a2b时,limxn不存在。
二、1f(xx0可导,an0,bn0,(n
证明:limnf(bnfa(n.f(0bnan证明limf(xf(0x0x0f(0,得对任意0,存在0,0|x|,成立
|f(xf(0xf(0|;因为an0,bn0,对上述0及确定的0,存在正整数0,nN,便有an0,0bn,|f(anf(0anf(0|,|f(bnf(0bnf(0|,于是|f(anf(0f(0an|(an,|f(bnf(0f(0bn|bn,从而
|f(bnf(anf(0(bnan||f(bnf(0f(0bn||f(anf(0f(0an|(bnan,即得|f(bnf(an(bnanf(0|,故有limf(bnf(anbnannf(0
.(2设函数f(x[a,b]上连续,(a,b内二阶可导,则存在(a,b,使得
(baabf(b2ff(a422f(.证明由于f(b2fabababf(af(bfff(a.222作辅助函数F(xfxbaf(x,x2ab,于是a,2ababFF(af(b2ff(a.22a,abab上对运用拉格朗日中值定理,F(x1a,,使得22babaabF(aff(.11222F2
《正在进行安全检测....doc》
将本文的Word文档下载,方便收藏和打印
推荐:
下载文档
热门推荐
相关推荐